Obrazy na stronie
PDF
ePub

ets are so nearly circular, and at such a great distance apart, that there is no danger of their interfering with each other. The earth, for example, when at its nearest distance from the sun, will never come so near it as Venus is when at its greatest distance, and therefore can never cross the orbit of Venus. But since the average distance of Ceres and Pallas from the sun is about the same, while the eccentricity of the orbit of Pallas is much greater than that of Ceres, consequently, Pallas may come so near to the sun at its perihelion, as to cross the orbit of Ceres.

The small size of the asteroids constitutes one of their most remarkable peculiarities. The difficulty of estimating the apparent diameter of bodies at once so very small and so far off, would lead us to expect different results in the actual estimates. Accordingly, while Dr. Herschel estimates the diameter of Pallas at only eighty miles, Schroeter places it as high as two thousand miles, or about the diameter of the moon. The volume of Vesta is estimated at only one fifteen thousandth part of the earth's, and her surface is only about equal to that of the kingdom of Spain.

These little bodies are surrounded by atmospheres of great extent, some of which are uncommonly luminous, and others appear to consist of nebulous matter, like that of comets. These planets shine with a more vivid light than might be expected, from their great distance and diminutive size; but a good telescope is essential for obtaining a distinct view of their phenomena.

Although the great chasm which occurs between Mars and Jupiter,—a chasm of more than three hundred millions of miles,-suggested long ago the idea of other planetary bodies occupying that part of the solar system, yet the discovery of the asteroids does. not entirely satisfy expectation since they are bodies so dissimilar to the other members of the series in size, in appearance, and in the form and inclinations of their orbits. Hence, Dr. Olbers, the discoverer of three of these bodies, held that they were fragments of a single

[blocks in formation]

large planet, which once occupied that place in the system, and which exploded in different directions by some internal violence. Of the fragments thus projected into space, some would be propelled in such directions and with such velocities, as, under the force of projection and that of the solar attraction, would make them revolve in regular orbits around the sun. Others would be so projected among the other bodies in the system, as to be thrown in very irregular orbits, apparently wandering lawless through the skies. The larger fragments would receive the least impetus from the explosive force, and would therefore circulate in an orbit deviating less than any other of the fragments from the original path of the large planet; while the lesser fragments, being thrown off with greater velocity, would revolve in orbits more eccentric, and more inclined to the ecliptic.

Dr. Brewster, editor of the Edinburgh Encyclopedia,' and the well-known author of various philosophical works, espoused this hypothesis with much zeal; and, after summing up the evidence in favor of it, he remarks as follows: "These singular resemblances in the motions of the greater fragments, and in those of the lesser fragments, and the striking coincidences between theory and observation in the eccentricity of their orbits, in their inclination to the ecliptic, in the position of their nodes, and in the places of their perihelia, are phenomena which could not possibly result from chance, and which concur to prove, with an evidence amounting almost to demonstration, that the four new planets have diverged from one common node, and have therefore composed a single planet."

The same distinguished writer supposes that some of the smallest fragments might even have come within reach of the earth's attraction, and by the combined effects of their projectile forces and the attraction of the earth, be made to revolve around this body as the larger fragments are carried around the sun; and that these are in fact the bodies which afford those meteoric

stones which are occasionally precipitated to the earth. It is now a well-ascertained fact, a fact which has been many times verified in our own country, that large meteors, in the shape of fire-balls, traversing the atmosphere, sometimes project to the earth masses of stony or ferruginous matter. Such were the meteoric stones which fell at Weston, in Connecticut, in 1807, of which a full and interesting account was published, after a minute. examination of the facts, by Professors Silliman and Kingsley, of Yale College. Various accounts of similar occurrences may be found in different volumes of the American Journal of Science. It is for the production of these wonderful phenomena that Dr. Brewster supposes the explosion of the planet, which, according to Dr. Olbers, produced the asteroids, accounts. Others, however, as Sir John Herschel, have been disposed to ascribe very little weight to the doctrine of Olbers.

LETTER XXIV.

THE PLANETARY MOTIONS.-KEPLER'S LAWS.-KEPLER.

centre.

"God of the rolling orbs above!

Thy name is written clearly bright
In the warm day's unvarying blaze,
Or evening's golden shower of light;
For every fire that fronts the sun,
And every spark that walks alone
Around the utmost verge of heaven,

Was kindled at thy burning throne."-Peabody.

Ir we could stand upon the sun and view the planetary motions, they would appear to us as simple as the motions of equestrians riding with different degrees of speed around a large ring, of which we occupied the We should see all the planets coursing each other from west to east, through the same great highway, (the Zodiac,) no one of them, with the exception of the asteroids, deviating more than seven degrees from the path pursued by the earth. Most of them, in

deed, would always be seen moving much nearer than that to the ecliptic. We should see the planets moving on their way with various degrees of speed. Mercury would make the entire circuit in about three months, hurrying on his course with a speed about one third as great as that by which the moon revolves around the earth. The most distant planets, on the other hand, move at so slow a pace, that we should see Mercury, Venus, the Earth, and Mars, severally overtaking them a great many times, before they had completed their revolutions. But though the movements of some were comparatively rapid, and of others extremely slow, yet they would not seem to differ materially, in other respects: each would be making a steady and nearly uniform march along the celestial vault.

Such would be the simple and harmonious motions of the planets, as they would be seen from the sun, the centre of their motions; and such they are, in fact. But two circumstances conspire to make them appear exceedingly different from these, and vastly more complicated; one is, that we view them out of the centre of their motions; the other, that we are ourselves in motion. I have already explained to you the effect which these two causes produce on the apparent motions of the inferior planets, Mercury and Venus. Let us now see how they effect those of the superior planets, Mars, Jupiter, Saturn, and Uranus.

Orreries, or machines intended to exhibit a model of the solar system, are sometimes employed to give a popular view of the planetary motions; but they oftener mislead than give correct ideas. They may assist reflection, but they can never supply its place. The impossibility of representing things in their just proportions will be evident, when we reflect that, to do this, if in an orrery we make Mercury as large as a cherry, we should have to represent the sun six feet in diameter. If we preserve the same proportions, in regard to distance, we must place Mercury two hundred and fifty feet, and Uranus twelve thousand five hundred feet,

or more than two miles from the sun. The mind of the student of astronomy must, therefore, raise itself from such imperfect representations of celestial phenomena, as are afforded by artificial mechanism, and, transferring his contemplations to the celestial regions themselves, he must conceive of the sun and planets as bodies that bear an insignificant ratio to the immense spaces in which they circulate, resembling more a few little birds. flying in the open sky, than they do the crowded machinery of an orrery.

The real motions of the planets, indeed, or such as orreries usually exhibit, are very easily conceived of, as before explained; but the apparent motions are, for the most part, entirely different from these. The apparent motions of the inferior planets have been already explained. You will recollect that Mercury and Venus move backwards and forwards across the sun, the former never being seen further than twenty-nine degrees, and the latter never more than about forty-seven degrees, from that luminary; that, while passing from the greatest elongation on one side, to the greatest elongation on the other side, through the superior conjunction, the apparent motions of these planets are accelerated by the motion of the earth; but that, while moving through the inferior conjunction, at which time their motions are retrograde, they are apparently retarded by the earth's motion. Let us now see what are the apparent motions of the superior planets.

ens.

Let A, B, C, Fig. 62, page 294, represent the earth in different positions in its orbit, M, a superior planet, as Mars, and N R, an arc of the concave sphere of the heavFirst, suppose the planet to remain at rest in M, and let us see what apparent motions it will receive from the real motions of the earth. When the earth is at B, it will see the planet in the heavens at N; and as the earth moves successively through C, D, E, F, the planet will appear to move through O, P, Q, R. B and F are the two points of greatest elongation of the earth from the sun, as seen from the planet; hence, between these

« PoprzedniaDalej »