Obrazy na stronie
PDF
ePub

that of the earth, being thirty-five thousand one hundred and twelve miles, yet his distance from the sun is likewise nineteen times as great as the earth's distance, or about eighteen hundred millions of miles. His revolution around the sun occupies nearly eighty-four years, so that his position in the heavens, for several years in succession, is nearly stationary. His path lies very nearly in the ecliptic, being inclined to it less than one degree. The sun himself, when seen from Uranus dwindles almost to a star, subtending, as it does, an angle of only one degree and forty minutes; so that the surface of the sun would appear there four hundred times less than it it does to us. This planet was discovered by Sir William Herschel on the thirteenth of March, 1781. His attention was attracted to it by the largeness of its disk in the telescope; and finding that it shifted its place among the stars, he at first took it for a comet, but soon perceived that its orbit was not eccentric, like the orbits of comets, but nearly circular, like those of the planets. It was then recognised as a new member of the planetary system, a conclusion which has been justified by all succeeding observations. It was named by the discoverer the George Star, (Georgium Sidus,) after his munificent patron, George the Third; in the United States, and in some other countries, it was called Herschel; but the name Uranus, from a Greek word, (Ougavos, Ouranos,) signifying the oldest of the gods, has finally prevailed. So distant is Uranus from the sun, that light itself, which moves nearly twelve millions of miles every minute, would require more than two hours and a half to pass to it from the sun.

And now, having contemplated all the planets separately, just cast your eyes on the diagram facing page 236, Fig. 53, and you will see a comparative view of the various magnitudes of the sun, as seen from each of the planets.

Uranus is attended by six satellites. So minute objects are they, that they can be seen only by power

ful telescopes. Indeed, the existence of more than two is still considered as somewhat doubtful. These two, however, offer remarkable and indeed quite unexpected and unexampled peculiarities. Contrary to the unbroken analogy of the whole planetary system, the planes of their orbits are nearly perpendicular to the ecliptic, and in these orbits their motions are retrograde; that is, instead of advancing from west to east around their primary, as is the case with all the other planets and satellites, they move in the opposite direction. With this exception, all the motions of the planets, whether around their own axes, or around the sun, are from west to east. The sun himself turns on his axis from west to east; all the primary planets revolve around the sun from west to east; their revolutions on their own axes are also in the same direction; all the secondaries, with the single exception above mentioned, move about their primaries from west to east; and, finally, such of the secondaries as have been discovered to have a diurnal revolution, follow the same course. Such uniformity among so many motions could have. resulted only from forces impressed upon them by the same Omnipotent hand; and few things in the creation more distinctly proclaim that God made the world.

Retiring now to this furthest verge of the solar system, let us for a moment glance at the aspect of the firmament by night. Notwithstanding we have taken a flight of eighteen hundred millions of miles, the same. starry canopy bends over our heads; Sirius still shines with exactly the same splendor as here; Orion, the Scorpion, the Great and the Little Bear, all occupy the same stations; and the Galaxy spans the sky with the same soft and mysterious light. The planets, however, with the exception of Saturn, are all lost to the view, being too near the sun ever to be seen; and Saturn himself is visible only at distant intervals, at periods of fifteen years, when at its greatest elongations from the sun, and is then too near the sun to permit a clear view of his rings, much less of the satellites that unite with

the rings to compose his gorgeous retinue. Comets, moving slowly as they do when so distant from the sun, will linger much longer in the firmament of Uranus than in ours.

Although the sun sheds by day a dim and cheerless light, yet the six satellites that enlighten and diversify the nocturnal sky present interesting aspects. "Let us suppose one satellite presenting a surface in the sky eight or ten times larger than our moon; a second, five or six times larger; a third, three times larger; a fourth, twice as large; a fifth, about the same size as the moon; a sixth, somewhat smaller; and, perhaps, three or four others of different apparent dimensions: let us suppose two or three of those, of different phases, moving along the concave of the sky, at one period four or five of them dispersed through the heavens, one rising above the horizon, one setting, one on the meridian, one towards the north, and another towards the south; at another period, five or six of them displaying their lustre in the form of a half moon, or a crescent, in one quarter of the heavens; and, at another time, the whole of these moons shining, with full enlightened hemispheres, in one glorious assemblage, and we shall have a faint idea of the beauty, variety, and sublimity of the firmament of Uranus."*

The New Planets,-Ceres, Pallas, Juno, and Vesta. -The commencement of the present century was rendered memorable in the annals of astronomy, by the discovery of four new planets, occupying the long vacant tract between Mars and Jupiter. Kepler, from some analogy which he found to subsist among the distances of the planets from the sun, had long before suspected the existence of one at this distance; and his conjecture was rendered more probable by the discovery of Uranus, which follows the analogy of the other planets. So strongly, indeed, were astronomers impressed with the idea that a planet would be found between Mars and Jupiter, that, in the hope of discovering *Dick's Celestial Scenery.'

it, an association was formed on the continent of Europe, of twenty-four observers, who divided the sky into as many zones, one of which was allotted to each member of the association. The discovery of the first of these bodies was, however, made accidentally by Piazzi, an astronomer of Palermo, on the first of January, 1801. It was shortly afterwards lost sight of on account of its proximity to the sun, and was not seen again until the close of the year, when it was re-discovered in Germany. Piazzi called it Ceres, in honor of the tutelary goddess of Sicily, and her emblem, the sickle, (7) has been adopted as its appropriate symbol.

The difficulty of finding Ceres induced Dr. Olbers, of Bremen, to examine with particular care all the small stars that lie near her path, as seen from the earth; and, while prosecuting these observations, in March, 1802, he discovered another similar body, very nearly at the same distance from the sun, and resembling the former in many other particulars. The discoverer gave to this second planet the name of Pallas, choosing for its symbol the lance, (4) the characteristic of Minerva.

The most surprising circumstance connected with the discovery of Pallas was the existence of two planets at nearly the same distance from the sun, and apparently crossing the ecliptic in the same part of the heavens, or having the same node. On account of this singularity, Dr. Olbers was led to conjecture that Ceres and Pallas are only fragments of a larger planet, which had formerly circulated at the same distance, and been shattered by some internal convulsion. The hypothesis suggested the probability that there might be other fragments, whose orbits might be expected to cross the ecliptic at a common point, or to have the same node. Dr. Olbers, therefore, proposed to examine carefully, every month, the two opposite parts of the heavens in which the orbits of Ceres and Pallas intersect one another, with a view to the discovery of other planets, which might be sought for in those parts with a greater chance of success, than in a wider zone,

embracing the entire limits of these orbits. Accordingly, in 1804, near one of the nodes of Ceres and Pallas, a third planet was discovered. This was called Juno, and the character () was adopted for its symbol, representing the starry sceptre of the Queen of Olympus. Pursuing the same researches, in 1807 a fourth planet was discovered, to which was given the name of Vesta, and for its symbol the character () was chosen, an altar surmounted with a censer holding the sacred fire.

The average distance of these bodies from the sun is two hundred and sixty-one millions of miles; and it is remarkable that their orbits are very near together. Taking the distance of the earth from the sun for unity, their respective distances are 2.77, 2.77, 2.67, 2.37. Their times of revolution around the sun are nearly equal, averaging about four and a half years.

In respect to the inclination of their orbits to the ecliptic, there is also considerable diversity. The orbit of Vesta is inclined only about seven degrees, while that of Pallas is more than thirty-four degrees. They all, therefore, have a higher inclination than the orbits of the old planets, and of course make excursions from the ecliptic beyond the limits of the zodiac. Hence they have been called the ultra-zodiacal planets. When first discovered, before their place in the system was fully ascertained it was also proposed to call them asteroids, a name implying that they were planets under the form of stars. Their title, however, to take their rank among the primary planets, is now generally conceded.

The eccentricity of their orbits is also, in general, greater than that of the old planets. You will recollect that this language denotes that their orbits are more elliptical, or depart further from the circular form. The eccentricities of the orbits of Pallas and Juno exceed that of the orbit of Mercury. The asteroids differ so much, however, in eccentricity, that their orbits may cross each other. The orbits of the old plan

« PoprzedniaDalej »