Obrazy na stronie
PDF
ePub

its outer edge. The astronomer, the mathematician, and the artist, have united their powers to produce this great result. The astronomer has collected the data, by long-continued and most accurate observations on the actual motions of the heavenly bodies, from night to night, and from year to year; the mathematician has. taken these data, and applied to them the boundless resources of geometry and the calculus; and, finally, the instrument-maker has furnished the means, not only of verifying these conclusions, but of discovering new truths, as the foundation of future reasonings.

Since the points where the moon crosses the ecliptic, or the moon's nodes, constantly shift their positions about nineteen and a half degrees to the westward, every year, the sun, in his annual progress in the ecliptic, will go from the node round to the same node again in less time than a year, since the node goes to meet him nineteen and a half degrees to the west of the point where they met before. It would have taken the sun about nineteen days to have passed over this arc; and consequently, the interval between two successive conjunctions between the sun and the moon's node is about nineteen days shorter than the solar year of three hundred and sixty-five days; that is, it is about three hundred and forty-six days; or, more exactly, it is 346.619851 days. The time from one new moon to another is 29.5305887 days. Now, nineteen of the former periods are almost exactly equal to two hundred and twenty-three of the latter:

66

=

[ocr errors]
[ocr errors]
[ocr errors]

For 346.619851X 19=6585.78 days 18 y. 10 d. And 29.5305887X223=6585.32 Hence, if the sun and moon were to leave the moon's node together, after the sun had been round to the same node nineteen times, the moon would have made very nearly two hundred and twenty-three conjunctions with the sun. If, therefore, she was in conjunction with the sun at the beginning of this period, she would be in conjunction again at the end of it; and all things relating to the sun, the moon, and the

node, would be restored to the same relative situation as before, and the sun and moon would start again, to repeat the same phenomena, arising out of these relations, as occurred in the preceding period, and in the same order. Now, when the sun and moon meet at the moon's node, an eclipse of the sun happens; and during the entire period of eighteen and a half years eclipses will happen, nearly in the same manner as they did at corresponding times in the preceding period. Thus, if there was a great eclipse of the sun on the fifth year of one of these periods, a similar eclipse (usually differing somewhat in magnitude) might be expected on the fifth year of the next period. Hence this period, consisting of about eighteen years and ten days, under the name of the Saros, was used by the Chaldeans, and other ancient nations, in predicting eclipses. It was probably by this means that Thales, a Grecian astronomer who flourished six hundred years before the Christian era, predicted an eclipse of the sun. Herodotus, the old historian of Greece, relates that the day was suddenly changed into night, and that Thales of Miletus had foretold that a great eclipse was to happen this year. It was therefore, at that age, considered as a distinguished feat to predict even the year in which an eclipse was to happen. This eclipse is memorable in ancient history, from its having terminated the war between the Lydians and the Medes, both parties being smitten with such indications of the wrath of the gods.

The Metonic Cycle has sometimes been confounded with the Saros, but it is not the same with it, nor was the period used, like the Saros, for foretelling eclipses, but for ascertaining the age of the moon at any given period. It consisted of nineteen tropical years, during which time there are exactly two hundred and thirtyfive new moons; so that, at the end of this period, the new moons will recur at seasons of the year corresponding exactly to those of the preceding cycle. If, for example, a new moon fell at the time of the vernal equinox, in one cycle, nineteen years afterwards it would

occur again at the same equinox; or, if it had happened ten days after the equinox, in one cycle, it would also happen ten days after the equinox, nineteen years afterwards. By registering, therefore, the exact days of any cycle at which the new or full moons occurred, such a calendar would show on what days these events would occur in any other cycle; and, since the regulation of games, feasts, and fasts, has been made very extensively, both in ancient and modern times, according to new or full moons, such a calendar becomes very convenient for finding the day on which the new or full moon required takes place. Suppose, for example, it were decreed that a festival should be held on the day of the first full moon after the Vernal equinox. Then, to find on what day that would happen, in any given year, we have only to see what year it is of the lunar cycle; for the day will be the same as it was in the corresponding year of the calendar which records all the full moons of the cycle for each year, and the respective days on which they happen.

The Athenians adopted the metonic cycle four hundred and thirty-three years before the Christian era, for the regulation of their calendars, and had it inscribed in letters of gold on the walls of the temple of Minerva. Hence the term golden number, still found in our almanacs, which denotes the year of the lunar cycle, Thus, fourteen was the golden number for 1837, being the fourteenth year of the lunar cycle.

The inequalities of the moon's motions are divided into periodical and secular. Periodical inequalities are those which are completed in comparatively short periods. Secular inequalities are those which are completed only in very long periods, such as centuries or ages. Hence the corresponding terms periodical equations and secular equations. As an example of a secular inequality, we may mention the acceleration of the moon's mean motion. It is discovered that the moon actually revolves around the earth in a less period now than she did in ancient times. The difference, howev

[blocks in formation]

er, is exceedingly small, being only about ten seconds in a century. In a lunar eclipse, the moon's longitude differs from that of the sun, at the middle of the eclipse, by exactly one hundred and eighty degrees; and since the sun's longitude at any given time of the year is known, if we can learn the day and hour when an eclipse occurred at any period of the world, we of course know the longitude of the sun and moon at that period. Now, in the year 721, before the Christian era, Ptolemy records a lunar eclipse to have happened, and to have been observed by the Chaldeans. The moon's longitude, therefore, for that time, is known; and as we know the mean motions of the moon, at present, starting from that epoch, and computing, as may easily be done, the place which the moon ought to occupy at present, at any given time, she is found to be actually nearly a degree and a half in advance of that place. Moreover, the same conclusion is derived from a comparison of the Chaldean observations with those made by an Arabian astronomer of the tenth century.

This phenomenon at first led astronomers to apprehend that the moon encountered a resisting medium, which, by destroying at every revolution a small portion of her projectile force, would have the effect to bring her nearer and nearer to the earth, and thus to augment her velocity. But, in 1786, La Place demonstrated that this acceleration is one of the legitimate effects of the sun's disturbing force, and is so connected with changes in the eccentricity of the earth's orbit, that the moon will continue to be accelerated while that eccentricity diminishes; but when the eccentricity has reached its minimum, or lowest point, (as it will do, after many ages,) and begins to increase, then the moon's motions will begin to be retarded, and thus her mean motions will oscillate for ever about a mean value.

LETTER XVIII.

ECLIPSES.

"As when the sun, new risen,

Looks through the horizontal misty air,
Shorn of his beams, or from behind the moon,
In dim eclipse, disastrous twilight sheds
On half the nations, and with fear of change
Perplexes monarchs: darkened so, yet shone,
Above them all, the Archangel."-Milton.

HAVING now learned various particulars respecting the earth, the sun, and the moon, you are prepared to understand the explanation of solar and lunar eclipses, which have in all ages excited a high degree of interest. Indeed, what is more admirable, than that astronomers should be able to tell us, years beforehand, the exact instant of the commencement and termination of an eclipse, and describe all the attendant circumstances with the greatest fidelity. You have doubtless, my dear friend, participated in this admiration, and felt a strong desire to learn how it is that astronomers are able to look so far into futurity. I will endeavor, in this Letter, to explain to you the leading principles of the calculation of eclipses, with as much plainness as possible.

An eclipse of the moon happens when the moon, in its revolution around the earth, falls into the earth's shadow. An eclipse of the sun happens when the moon, coming between the earth and the sun, covers either a part or the whole of the solar disk.

The earth and the moon being both opaque, globular bodies, exposed to the sun's light, they cast shadows opposite to the sun, like any other bodies on which the sun shines. Were the sun of the same size with the earth and the moon, then the lines drawn touching the surface of the sun and the surface of the earth or moon (which lines form the boundaries of the shadow) would be parallel to each other, and the shadow would be a cylinder infinite in length; and were the sun less than

« PoprzedniaDalej »