Obrazy na stronie
PDF
ePub

CHAPTER XXI.

SEGREGATION.

§ 163. THE general interpretation of Evolution is far from being completed in the preceding chapters. We must contemplate its changes under yet another aspect, before we can form a definite conception of the process constituted by them. Though the laws already set forth, furnish a key to the re-arrangement of parts which Evolution exhibits, in so far as it is an advance from the uniform to the multiform; they furnish no key to this re-arrangement in so far as it is an advance from the indefinite to the definite. On studying the actions and re-actions everywhere going on, we have found it to follow inevitably from a certain primordial truth, that the homogeneous must lapse into the heterogeneous, and that the heterogeneous must become more heterogeneous; but we have not discovered why the differently-affected parts of any simple whole, become clearly marked off from each other, at the same time that they become unlike. Thus far no reason has been assigned why there should not ordinarily arise a vague chaotic heterogeneity, in place of that orderly heterogeneity displayed in Evolution. It still remains to find out the cause of that local integration which accompanies local differentiation—that gradually-completed segregation of like units into a group, distinctly separated from neighbouring groups which are severally made up of other kinds of units. The rationale will be conveniently introduced by a few instances in which we may watch this segregative process taking place.

When towards the end of September, the trees are gaining their autumn colours, and we are hoping shortly to see a further change increasing still more the beauty of the landscape, we are not uncommonly disappointed by the occurrence of an equinoxial gale. Out of the mixed mass of foliage on each branch, the strong current of air carries away the decaying and brightly-tinted leaves, but fails to detach those which are still green. And while these last, frayed and seared by long-continued beatings against each other, and the twigs around them, give a sombre colour to the woods, the red and yellow and orange leaves are collected together in ditches and behind walls and in corners where eddies allow them to settle. That is to say, by the action of that uniform force which the wind exerts on both kinds, the dying leaves are picked out from among their still living companions and gathered in places by themselves. Again, the separation of particles of different sizes, as dust and sand from pebbles, may be similarly effected; as we see on every road in March. And from the days of Homer downwards, the power of currents of air, natural and artificial, to part from one another units of unlike specific gravities, has been habitually utilized in the winnowing of chaff from wheat. In every river we see how the mixed materials carried down, are separately deposited-how in rapids the bottom gives rest to nothing but boulders and pebbles; how where the current is not so strong, sand is let fall; and how, in still places, there is a sediment of mud. This selective action of moving water, is commonly applied in the arts to obtain masses of particles of different degrees of fineness. Emery, for example, after being ground, is carried by a slow current through successive compartments; in the first of which the largest grains subside; in the second of which the grains that reach the bottom before the water has escaped, are somewhat smaller; in the third smaller still; until in the last there are deposited only those finest particles which fall so slowly through the water, that they have

not previously been able to reach the bottom. And in a way that is different though equally significant, this segregative effect of water in motion, is exemplified in the carrying away of soluble from insoluble matters-an application of it hourly made in every laboratory. The effects of

the uniform forces which aërial and aqueous currents exercise, are paralleled by those of uniform forces of other orders. Electric attraction will separate small bodies from large, or light bodies from heavy. By magnetism, grains of iron may be selected from among other grains; as by the Sheffield grinder, whose magnetized gauze mask filters out the steel-dust which his wheel gives off, from the stone-dust that accompanies it. And how the affinity of any agent acting differently on the components of a given body, enables us to take away some component and leave the rest behind, is shown in almost every chemical experiment.

What now is the general truth here variously presented? How are these several facts and countless similar ones, to be expressed in terms that embrace them all? In each case we see in action a force which may be regarded as simple or uniform-fluid motion in a certain direction at a certain velocity; electric or magnetic attraction of a given amount; chemical affinity of a particular kind: or rather, in strictness, the acting force is compounded of one of these and certain other uniform forces, as gravitation, etc. In each case we have an aggregate made up of unlike units-either atoms of different substances combined or intimately mingled, or fragments of the same substance of different sizes, or other constituent parts that are unlike in their specific gravities, shapes, or other attributes. And in each case these unlike units, or groups of units, of which the aggregate consists, are, under the influence of some resultant force acting indiscriminately on them all, separated from each other—segregated into minor aggregates, each consisting of units that are severally like each other and unlike those of the other minor aggregates. Such being the common aspect of these.

changes, let us look for the common interpretation of them.

In the chapter on "The Instability of the Homogeneous," it was shown that a uniform force falling on any aggregate, produces unlike modifications in its different partsturns the uniform into the multiform and the multiform into the more multiform. The transformation thus wrought, consists of either insensible or sensible changes of relative position among the units, or of both-either of those molecular re-arrangements which we call chemical, or of those larger transpositions which are distinguished as mechanical, or of the two united. Such portion of the permanently effective force as reaches each different part, or differently-conditioned part, may be expended in modifying the mutual relations of its constituents; or it may be expended in moving the part to another place; or it may be expended partially in the first and partially in the second. Hence, so much of the permanently effective force as does not work the one kind of effect, must work the other kind. It is manifest that if of the permanently effective force which falls on some compound unit of an aggregate, little, if any, is absorbed in re-arranging the ultimate components of such compound unit, much or the whole, must show itself in motion of such compound unit to some other place in the aggregate; and conversely, if little or none of this force is absorbed in generating mechanical transposition, much or the whole must go to produce molecular alterations. What now must follow from this? In cases where none or only part of the force generates chemical re-distributions, what physical re-distributions must be generated? Parts that are similar to each other will be similarly acted on by the force; and will similarly react on it. Parts that are dissimilar will be dissimilarly acted on by the force; and will dissimilarly react on it. Hence the permanently effective incident. force, when wholly or partially transformed into mechanical motion of the units, will produce like motions in units that

are alike, and unlike motions in units that are unlike. If then, in an aggregate containing two or more orders of mixed units, those of the same order will be moved in the same way, and in a way that differs from that in which units of other orders are moved, the respective orders must segregate. A group of like things on which are impressed motions that are alike in amount and direction, must be transferred as a group to another place, and if they are mingled with some group of other things, on which the motions impressed are like each other, but unlike those of the first group in amount or direction or both, these other things must be transferred as a group to some other place the mixed units must undergo a simultaneous selection and separation.

In further elucidation of this process, it will be well here to set down a few instances in which we may see that, other things equal, the definiteness of the separation is in proportion to the definiteness of the difference between the units. Take a handful of any pounded substance, containing fragments of all sizes; and let it fall to the ground while a gentle breeze is blowing. The large fragments will be collected together on the ground almost immediately under the hand; somewhat smaller fragments will be carried a little to the leeward; still smaller ones a little further; and those minute particles which we call dust, will be drifted a long way before they reach the earth: that is, the integration is indefinite where the difference among the fragments is indefinite, though the divergence is greatest where the difference is greatest. If, again, the handful be made up of quite distinct orders of units-as pebbles, coarse sand, and dust―these will, under like conditions, be segregated with comparative definiteness: the pebbles will drop almost vertically; the sand will fall in an inclined direction, and deposit itself within a tolerably circumscribed space beyond the pebbles; while the dust will be blown almost horizontally to a great distance. A case in which another kind of force comes into play, will still better illustrate this truth.

« PoprzedniaDalej »