Obrazy na stronie
PDF
ePub

upon it. The resultant force exercised by the aggregate on each unit, being in no two cases alike in both amount and direction, and usually not in either, any incident force, even if uniform in amount and direction, cannot produce like effects on the units. And the various positions of the parts in relation to any incident force, preventing them from receiving it in uniform amounts and directions, a further difference in the effects wrought on them is inevitably produced.

One further remark is needed. To the conclusion that the changes with which Evolution commences, are thus necessitated, remains to be added the conclusion that these changes must continue. The absolutely homogeneous must lose its equilibrium; and the relatively homogeneous must lapse into the relatively less homogeneous. That which is true of any total mass, is true of the parts into which it segregates. The uniformity of each such part must as inevitably be lost in multiformity, as was that of the original whole; and for like reasons. And thus the continued changes which characterize Evolution, in so far as they are constituted by the lapse of the homogeneous into the heterogeneous, and of the less heterogeneous into the more heterogeneous, are necessary consequences of the persistence of force.

CHAPTER XX.

THE MULTIPLICATION OF EFFECTS.

§ 156. To the cause of increasing complexity set forth in the last chapter, we have in this chapter to add another. Though secondary in order of time, it is scarcely secondary in order of importance. Even in the absence of the cause already assigned, it would necessitate a change from the homogeneous to the heterogeneous; and joined with it, it makes this change both more rapid and more involved. To come in sight of it, we have but to pursue a step further, that conflict between force and matter already delineated. Let us do this.

When a uniform aggregate is subject to a uniform force, we have seen that its constituents, being differently conditioned, are differently modified. But while we have contemplated the various parts of the aggregate as thus undergoing unlike changes, we have not yet contemplated the unlike changes simultaneously produced on the various parts of the incident force. These must be as numerous and important as the others. Action and re-action being equal and opposite, it follows that in differentiating the parts on which it falls in unlike ways, the incident force must itself be correspondingly differentiated. Instead of being as before, a uniform force, it must thereafter be a multiform force-a group of dissimilar forces. A few illustrations will make this truth manifest.

A single force is divided by conflict with matter into

ism.

forces that widely diverge. In the case lately cited, of a body shattered by violent collision, besides the change of the homogeneous mass into a heterogeneous group of scattered fragments, there is a change of the homogeneous momentum into a group of momenta, heterogeneous in both amounts and directions. Similarly with the forces we know as light and heat. After the dispersion of these by a radiating body towards all points, they are re-dispersed towards all points by the bodies on which they fall. Of the Sun's rays, issuing from him on every side, some few strike the Moon. These being reflected at all angles from the Moon's surface, some few of them strike the Earth. By a like process the few which reach the Earth are again diffused through surrounding space. And on each occasion, such portions of the rays as are absorbed instead of reflected, undergo refractions that equally destroy their parallelMore than this is true. By conflict with matter, a uniform force is in part changed into forces differing in their directions; and in part it is changed into forces differing in their kinds. When one body is struck against another, that which we usually regard as the effect, is a change of position or motion in one or both bodies. But a moment's thought shows that this is a very incomplete view of the matter. Besides the visible mechanical result, sound is produced; or, to speak accurately, a vibration in one or both bodies, and in the surrounding air: and under some circumstances we call this the effect. Moreover, the air has not simply been made to vibrate, but has had currents raised in it by the transit of the bodies. Further, if there is not that great structural change which we call fracture, there is a disarrangement of the particles of the two bodies around their point of collision; amounting in some cases to a visible condensation. Yet more, this condensation is accompanied by disengagement of heat. In some cases a spark-that is, light-results, from the incandescence of a portion struck off; and occasionally this incandescence is as

sociated with chemical combination. Thus, by the original mechanical force expended in the collision, at least five, and often more, different kinds of forces have been produced. Take, again, the lighting of a candle. Primarily, this is a chemical change consequent on a rise of temperature. The process of combination having once been set going by extraneous heat, there is a continued formation of carbonie acid, water, &c.-in itself a result more complex than the extraneous heat that first caused it. But along with this process of combination there is a production of heat; there is a production of light; there is an ascending column of hot gases generated; there are currents established in the surrounding air. Nor does the decomposition of one force into many forces end here. Each of the several changes worked becomes the parent of further changes. The carbonic acid formed, will by and by combine with some base; or under the influence of sunshine give up its carbon to the leaf of a plant. The water will modify the hygrometric state of the air around; or, if the current of hot gases containing it come against a cold body, will be condensed: altering the temperature, and perhaps the chemical state, of the surface it covers. The heat given out melts the subjacent tallow, and expands whatever it warms. The light, falling on various substances, calls forth from them reactions by which it is modified; and so divers colours are produced. Similarly even with these secondary actions, which may be traced out into ever-multiplying ramifications, until they become too minute to be appreciated. Universally, then, the

effect is more complex than the cause. Whether the aggregate on which it falls be homogeneous or otherwise, an incident force is transformed by the conflict into a number of forces that differ in their amounts, or directions, or kinds; or in all these respects. And of this group of variously-modified forces, each ultimately undergoes a like transformation.

Let us now mark how the process of evolution is fur

thered by this multiplication of effects. An incident force decomposed by the reactions of a body into a group of unlike forces a uniform force thus reduced to a multiform force becomes the cause of a secondary increase of multiformity in the body which decomposes it. In the last chapter we saw that the several parts of an aggregate are differently modified by any incident force. It has just been shown that by the reactions of the differently modified parts, the incident force itself must be divided into differently modified parts. Here it remains to point out that each differentiated division of the aggregate, thus becomes a centre from which a differentiated division of the original force is again diffused. And since unlike forces must produce. unlike results, each of these differentiated forces must produce, throughout the aggregate, a further series of differentiations. This secondary cause of the change from homogeneity to heterogeneity, obviously becomes more potent in proportion as the heterogeneity increases. When the parts into which any evolving whole has segregated itself, have diverged widely in nature, they will necessarily react very diversely on any incident force they will divide an incident force into so many strongly contrasted groups of forces. And each of them becoming the centre. of a quite distinct set of influences, must add to the number of distinct secondary changes wrought throughout the aggregate. Yet another corollary must be added. The number of unlike parts of which an aggregate consists, as well as the degree of their unlikeness, is an important factor in the process. Every additional specialized division is an additional centre of specialized forces. If a uniform whole, in being itself made multiform by an incident force, makes the incident force multiform; if a whole consisting of two unlike sections, divides an incident force into two unlike groups of multiform forces; it is clear that each new unlike section must be a further source of complication among the forces at work throughout the mass-a further.

« PoprzedniaDalej »