Obrazy na stronie
PDF
ePub

this type of pupil, we find that many of them are essentially nocturnal in habits-the gecko, the alligator, the cat-animals in which the rod functions are predominant over those of the cones. At night or in dim light the pupil of the cat is wide open and round. Furthermore, in the daytime, when the pupil is a vertical slit or oval, cats hunt and catch a great deal on the ground, for example, birds and squirrels, as well as chase the rapidly swirling leaves. The cat is furthermore said to have very defective daylight vision and to be colorblind (DeVoss and Ganson, '15). The alligator hunts along horizontal contours, and yet one finds that the shape of the pupil is a vertical slit.

SUMMARY

1. The eye of the alligator possesses a well-developed retinal tapetum in the dorsal and posterior portions of the retina to within 1.5 mm. of the entrance of the optic nerve. It is formed by the inclusion of guanin in the cells of the epithelial layer (figs. 1, 2, 3, 4). The pecten consists of a slightly raised pigmented cap covering the entrance of the optic nerve.

2. Typical rods and cones occur throughout the retina, the cone-rod ratio being different for different regions, but characteristic for particular regions (p. 216).

3. The rods are all of one type (fig. 5), the cones of two, thick and thin, of which the first is by far the more numerous, occurring particularly in the posterior and ventral portions of the retina. Those of the second type are found only in the ventral portion and are not numerous (fig. 6). Double cones also occur (figs. 7 and 8). None of the cones contain oil drops. The rod nuclei are oval or elliptical in shape, and the majority of them project through the external limiting membrane for a variable extent, the rest of them being just under it. The cone nuclei are pear shaped and, occupying a deeper level than the rod nuclei, constitute a second row (figs. 5, 6, 9, 10).

4. The rods show a change in length of their myoids averaging 4μ, being longer in the light and shorter in the dark (figs. 9, 10, 11 and table 1). The single cones (thick and thin) show an average change of 2.1μ (figs. 11, 12, 13 and table 1). The

smaller member of the double cones shows an average change in length of 3.5μ, the larger member of 2.7μ (figs. 7, 8 and table 1). 5. The actual change in position of the pigment between light and dark eyes is slight, averaging but 1.6μ; but when combined with the change in length of the visual cells, gives an effective migration equal to the sum of the two (figs. 9, 10, 11).

6. A theoretical consideration of photomechanical changes and of the duplicity theory from a comparative point of view is appended.

BIBLIOGRAPHY

ABELSDORFF, G. 1898 Physiologische Beobachtungen am Auge der Krokodile. Arch. f. Anat. (u. Physiol.), S. 155–167.

ABNEY, SIR W. DE W., AND WATSON, W. 1916 The threshold of vision for different colored lights. Philosoph. Trans. Roy. Soc., vol. 216A, pp. 91– 142.

Abney, Sir W. De W. 1917 Two cases of congenital nightblindness. Proc. Roy. Soc., vol. 90B, pp. 69-74.

AREY, L. B. 1919 A retinal mechanism of efficient vision. Jour. Comp. Neur., vol. 30, pp. 343-354.

BARD, L. 1919 Du rôle des bâtonnets et des pigments rétiniens dans la perception des formes et des couleurs. Jrl. de Physiol. et de Path. gén., T. 18, p. 276-294.

BAYLISS, W. M. 1918 Principles of general physiology. Second edition. Longmans, Green & Co.

BERNARD, H. M. 1903 Studies in the retina. Q. J. Micro. Sci., N. S. vol. 46, pp. 25-75.

CAMERON, J. 1905 The development of the retina in amphibia. Jrl. Anat. and Physiol., vol. 39, pp. 135–153, 332-348, 471–488.

1911 Further researches on the rods and cones of vertebrate retinae. Jrl. Anat. and Physiol., vol. 46, pp. 45-53.

CHIEVITZ, J. H. 1889 Untersuchungen über die Area centralis Retinae. Arch. f. Anat. (u. Physiol.), Suppl. Bd., S. 139-196.

COBB, W. C. 1919 Dark-adaptation with especial reference to problems of night-flying. Psychol. Rev., vol. 26, pp. 428-453.

DETWILER, S. R. 1916 The effect of light on the retina of the tortoise and the lizard. Jour. Exp. Zoöl., vol. 20, pp. 165–191.

DeVoss, J. C., AND GANSON, R. 1915 Color blindness in cats. Jour. Animal Behav., vol. 5, pp. 115–139.

EXNER, S., UND JANUSCHKE, H. 1906 Die Stäbchenwanderung im Auge von Abramis brama bei Lichtveränderungen. Ber. d. k. k. Akad. d. Wiss. zu Wien, Math.-Nat. Kl., Bd. 115, S. 269–280.

FRANZ, V. 1913 Sehorgan. Oppel's Lehrb. d. vergl. mikro. Anat. d. Wirbeltiere. G. Fischer.

FÜRST 1904 Zur Kenntnis der Histogenese und des Wachstums der Retina. Lund's Universitets Arsskrift, Bd. 40, adfeln 1. No. 1 (cited from Cajal, '11).

GARTEN, S. 1907 Die Veränderungen der Netzhaut durch Licht. GraefeSaemisch Handb. d. ges. Augenheilk. I. Teil, III. Bd., XII. Kap. Anhang., S. 1-130.

HARTRIDGE, H. 1919 The shape of the pupil in various animals. Jour. Phys

[blocks in formation]

HEINEMANN, C. 1877 Beiträge zur Anatomie der Retina. Ar. f. mikroskop. Anat., Bd. 14, S. 409-441.

HELMHOLTZ, H. VON 1911 Handbuch der physiologischen Optik. Dritte Aufl., Bd. 2. L. Voss.

HERZOG, H. 1905 Experimentelle Untersuchungen zur Physiologie der Bewegungsvorgänge in der Netzhaut. Ar. f. (Anat. u.) Physiol., S. 413

464.

HESS, C. 1910 Untersuchungen über den Lichtsinn bei Reptilien und Amphibien. Pflüger's Archiv, Bd. 143, S. 255–295.

1913 Gesichtssinn. Winterstein's Handb. d. vergl. Physiol., Bd. 3, S. 555-840. G. Fischer.

HESSE, R. 1904 Ueber den feineren Bau der Stäbchen und Zapfen einiger Wirbeltiere. Zool. Jahrb., Suppl. Bd. 7, S. 471-511.

Katz, D., und Révész, G. 1913 Ein Beitrag zur Kenntnis des Lichtsinns der Nachtvögel. Zeit. f. Sinnesphysiol., Bd. 48, S. 165-170.

KERR, J. GRAHAM 1919 Text-book of embryology, vol. 2, Macmillan & Co. KOLMER, W. 1909 Ueber einen sekretartigen Bestandteil der Stäbchen-zapfenschicht. Pflüger's Archiv, Bd. 129, S. 35-45.

KRAUSE, W. 1876 Die Nervenendigung in der Retina. Ar. f. mikroskop. Anat., Bd. 12, S. 742–790.

1893 Die Retina der Reptilien. Intern. Monatschr. f. Anat. und Physiol., Bd. 10, S. 13–31, S. 33-62, S. 68-84.

1895 Die Retina. Nachträge. Ibid., Bd. 12, S. 176–186.

LASHLEY, K. S. 1916 The color vision of birds. I. The spectrum of the domestic fowl. Jour. Ani. Behav., vol. 6, pp. 1-26.

LEBOUCQ, G. 1909 Contribution a l'étude de l'histogénèse de la rétine chez les Mammifères. Arch. d'Anat. Microscop., T. 10, p. 555-605.

NAGEL, W. 1905 Handbuch der Physiologie des Menschen, Bd. 3. Fr. Vieweg & Sohn.

NEUMAYER, L. 1897 Der feinere Bau der Salachier-Retina. Ar. f. mikroskop. Anat., Bd. 48, S. 83-110.

PARSONS, J. H. 1915 An introduction to the study of colour vision. Putnam's Sons.

PÜTTER, A. 1912 Organologie des Auges. Wm. Engelmann.

RAMON Y CAJAL, S. 1894 Die Retina der Wirbelthiere. Bergmann.

1911 Histologie du Système nerveux de l'homme et des Vertébrés. A. Maloine.

RETZIUS, G. 1905 Zur Kenntnis vom Bau der Selachier Retina. Biol. Unters.

(N. F.), Bd. 12, S. 55-60.

ROCHON-DUVIGNEAUD, A. 1917 Les fonctions des cônes et des bâtonnets. Indications fournies par la physiologie comparée. Ann. d'oculistique, Nov., p. 16.

SCHAPER, A. 1899 Die nervösen Elemente der Selachier-Retina in Methylenblaupräparaten. Festschr. z. 70. Geburtstag von C. von Kuppfer, S. 1-10.

SCHULTZE, M. 1866 Zur Anatomie und Physiologie der Retina. Ar. f. mikroskop. Anat., Bd. 2, S. 175–286.

TAFANI, A. 1883 Parcours et terminaison du nerf optique dans la rétine des crocodiles (Champsia lucius). Ar. ital de Biol., T. 4, p. 210-233. TROLAND, L. T. 1916 Apparent brightness; its conditions and properties. Trans. Illum. Eng. Soc., Vol. 11, pp. 947-966.

1917 The nature of the visual receptor process. Jour. Opt. Soc. of America, vol. 1, pp. 3–15.

VINCENT, S. B. 1912 The mammalian eye. Jour. Ani. Behav., vol. 2, pp. 249255.

WATSON, J. B. 1915 Studies on the spectral sensitivity of birds. Carnegie Institute of Washington, Dept. of Marine Biol., no. 211, pp. 85-104.

cine, 1921, xviii, pp. 137-138.

64 (1646)

Paramecium calkinsi sp. n.

By LORANDE LOSS WOODRUFF.

[From the Osborn Zoölogical Laboratory, Yale University.]

There are at present four well-established species of Paramecium (P. aurelia, P. caudatum, P. bursaria, and P. putrinum) which fall naturally into two quite clearly defined groups. One group comprises Paramecium aurelia and Paramecium caudatum which are characterized by a relatively long spindle-shaped body. The other group includes Paramecium bursaria and Paramecium putrinum which exhibit a somewhat shorter and broader form, with a tendency toward a dorso-ventral flattening. All the species have a single micronucleus except Paramecium aurelia, which has two micronuclei each showing characteristic 'endosome' structure.1

The purpose of the present paper is to record the discovery in January, 1920, of a hitherto undescribed form of Paramecium. It has now been extensively studied in pedigree cultures for more than a year and during this time it has bred true. I therefore definitely designate it a new species, Paramecium calkinsi, in recognition of the fact that Professor G. N. Calkins of Columbia. University introduced students of the Infusoria to exact, daily isolation, pedigree culture methods.

The general body form of the new species places it at once in the bursaria-putrinum group, but its micronuclei both in structure and number are identical with those of Paramecium aurelia. In brief, Paramecium calkinsi represents the 'aurelia' type of micronuclear complex in the 'bursaria' group of species.

Details of the structure and life history of Paramecium calkinsi will appear in the Biological Bulletin.

1 H. S. Jennings and G. T. Hargitt: "Characteristics of the Diverse Races of Paramecium," Journal of Morphology, 1910, xxi, 495. L. L. Woodruff: "Paramecium aurelia and Paramecium caudatum," Journal of Morphology, 1911, xxii, 223.

« PoprzedniaDalej »