Obrazy na stronie
PDF
ePub

transit instrument announces that the centre of the sun is on the meridian. By a concerted signal, as the stroke of a bell, the inhabitants of a town may all fix a noon-mark from the same observation. If the signal be given on one of the days when apparent time and mean time become equal to each other, as on the twenty-fourth of December, no equation of time is required.

As a noon-mark is convenient for regulating timepieces, I will point out a method of making one, which may be practised without the aid of the telescope. Upon a smooth, level plane, freely exposed to the sun, with a pair of compasses describe a circle. In the centre, where the leg of the compasses stood, erect a perpendicular wire of such a length, that the termination. of its shadow shall fall upon the circumference of the circle at some hour before noon, as about ten o'clock. Make a small dot at the point where the end of the shadow falls upon the circle, and do the same where it falls upon it again in the afternoon. Take a point halfway between these two points, and from it draw a line. to the centre, and it will be a true meridian line. The direction of this line would be the same, whether it were made in the Summer or in the Winter; but it is expedient to draw it about the fifteenth of June, for then the shadow alters its length most rapidly, and the moment of its crossing the wire will be more definite, than in the Winter. At this time of year, also, the sun and clock agree, or are together, as will be more fully explained in my next Letter; whereas, at other times of the year, the time of noon, as indicated by a common clock, would not agree with that indicated by the sun. If the upper end of the wire is flattened, and a small hole is made in it, through which the sun may shine, the instant when this bright spot falls upon the circle will be better defined than the termination of the shadow.

Another important instrument of the observatory is the mural circle. It is a graduated circle, usually of very large size, fixed permanently in the plane of the meridian, and attached firmly to a perpendicular wall;

and on its centre is a telescope, which revolves along with it, and is easily brought to bear on any object in any point in the meridian. It is made of large size, sometimes twenty feet in diameter, in order that very small angles may be measured on its limb; for it is obvious that a small angle, as one second, will be a larger space on the limb of an instrument, in proportion as the instrument itself is larger. The vertical circle usually connected with the transit instrument, as in Fig. 7, may indeed be employed for the same purposes as the mural circle, namely, to measure arcs of the meridian, as meridian altitudes, zenith distances, north polar distances, and declinations; but as that circle must necessarily be small, and therefore incapable of measuring very minute angles, the mural circle is particularly useful in measuring these important arcs. It is very difficult to keep so large an instrument perfectly steady; and therefore it is attached to a massive wall of solid masonry, and is hence called a mural circle, from a Latin word, (murus,) which signifies a wall.

The diagram, Fig. 8, page 56, represents a mural circle fixed to its wall, and ready for observations. It will be seen, that every expedient is employed to give the instrument firmness of parts and steadiness of position. The circle is of solid metal, usually of brass, and it is strengthened by numerous radii, which keep it from warping or bending; and these are made in the form of hollow cones, because that is the figure which unites in the highest degree lightness and strength. On the rim of the instrument, at A, you may observe a microscope. This is attached to a micrometer,-a delicate piece of apparatus, used for reading the minute subdivisions of angles; for, after dividing the limb of the instrument as minutely as possible, it will then be necessary to magnify those divisions with the microscope, and subdivide each of these parts with the micrometer. Thus, if we have a mural circle twenty feet in diameter, and of course nearly sixty-three feet in circumference, since there are twenty-one thousand and six hun

dred minutes in the whole circle, we shall find, by cal culation, that one minute would occupy, on the limb of such an instrument, only about one thirtieth of an inch, and a second, only one eighteen hundredth of an inch. We could not, therefore, hope to carry the actual di visions to a greater degree of minuteness than minutes; but each of these spaces may again be subdivided into seconds by the micrometer.

Fig. 8.

From these statements, you will acquire some faint idea of the extreme difficulty of making perfect astronomical instruments, especially where they are intended to measure such minute angles as one second. Indeed, the art of constructing astronomical instruments is one which requires such refined mechanical genius,-so su

perior a mind to devise, and so delicate a hand to execute, that the most celebrated instrument-makers take rank with the most distinguished astronomers ; supplying, as they do, the means by which only the latter are enabled to make these great discoveries. As tronomers have sometimes made their own telescopes; but they have seldom, if ever, possessed the refined manual skill which is requisite for graduating delicate instruments.

The sextant is also one of the most valuable instruments for taking celestial arcs, or the distance between any two points on the celestial sphere, being applicable to a much greater number of purposes than the instruments already described. It is particularly valuable for measuring celestial arcs at sea, because it is not, like most astronomical instruments, affected by the motion of the ship. The principle of the sextant may be briefly described, as follows: it gives the angular distance between any two bodies on the celestial sphere, by reflecting the image of one of the bodies so as to coincide with the other body, as seen directly. The arc through which the reflector is turned, to bring the reflected body to coincide with the other body, becomes a measure of the angular distance between them. By keeping this principle in view, you will be able to understand the use of the several parts of the instrument, as they are exhibited in the diagram, Fig. 9, page 58.

It is, you observe, of a triangular shape, and it is made strong and firm by metallic cross-bars. It has two reflectors, I and H, called, respectively, the index glass and the horizon glass, both of which are firmly fixed perpendicular to the plane of the instrument. The index glass is attached to the movable arm, I D, and turns as this is moved along the graduated limb, E F. This arm also carries a vernier, at D, a contrivance which, like the micrometer, enables us to take off minute parts of the spaces into which the limb is divided. The horizon glass, H, consists of two parts; the upper part being transparent or open, so that the eye, looking

[merged small][merged small][merged small][ocr errors]

through the telescope, T, can see through it a distant body, as a star at S, while the lower part is a reflector. Suppose it were required to measure the angular distance between the moon and a certain star,—the moon being at M, and the star at S. The instrument is held firmly in the hand, so that the eye, looking through the telescope, sees the star, S, through the transparent part of the horizon glass. Then the movable arm, ID, is moved from F towards E, until the image of M is reflected down to S, when the number of degrees and parts of a degree reckoned on the limb, from F to the index at D, will show the angular distance between the two bodies.

« PoprzedniaDalej »