Obrazy na stronie
PDF
ePub

et, at which these eclipses will be seen to occur, will be altered by the position the earth happens at that moment to have in its orbit; but their appearances for any given night, as exhibited at Greenwich, are calculated and accurately laid down in the Nautical Almanac.

When one of the satellites is passing between Jupiter and the sun, it casts its shadow on the primary, as the moon casts its shadow on the earth in a solar eclipse. We see with the telescope the shadow traversing the disk. Sometimes, the satellite itself is seen projected on the disk; but, being illuminated as well as the primary, it is not so easily distinguished as Venus or Mercury, when seen on the sun's disk in one of their transits, since these bodies have their dark sides turned towards us; but the satellite is illuminated by the sun, as well as the primary, and therefore is not easily distinguishable from it.

The eclipses of Jupiter's satellites have been studied with great attention by astronomers, on account of their affording one of the easiest methods of determining the longitude. On this subject, Sir John Herschel remarks: "The discovery of Jupiter's satellites by Galileo, which was one of the first fruits of the invention of the telescope, forms one of the most memorable epochs in the history of astronomy. The first astronomical solution of the problem of the longitude,'the most important problem for the interests of mankind. that has ever been brought under the dominion of strict scientific principles, dates immediately from this discovery. The final and conclusive establishment of the Copernican system of astronomy may also be consid cred as referable to the discovery and study of this exquisite miniature system, in which the laws of the planetary motions, as ascertained by Kepler, and especially that which connects their periods and distances, were speedily traced, and found to be satisfactorily maintained."

The entrance of one of Jupiter's satellites into the shadow of the primary, being seen like the entrance of

the moon into the earth's shadow at the same momen of absolute time, at all places where the planet is visible, and being wholly independent of parallax, that is, presenting the same phenomenon to places remote from each other; being, moreover, predicted beforehand, with great accuracy, for the instant of its occurrence at Greenwich, and given in the Nautical Almanac; this would seem to be one of those events which are peculiar y adapted for finding the longitude. For you will recollect, that any instantaneous appearance in the heavens, visible at the same moment of absolute time at any two places, may be employed for determining the difference of longitude between those places; for the difference in their local times, as indicated by clocks or chronometers, allowing fifteen degrees for every hour, will show their difference of longitude.

With respect to the method by the eclipses of Jupiter's satellites, it must be remarked, that the extinction of light in the satellite, at its immersion, and the recovery of its light at its emersion, are not instantaneous, but gradual; for the satellite, like the moon, occupies some time in entering into the shadow, or in emerging from it, which occasions a progressive diminution or increase of light. Two observers in the same room, observing with different telescopes the same eclipse, will frequently disagree, in noting its time, to the amount of fifteen or twenty seconds. Better methods, therefore, of finding the longitude, are now employed, although the facility with which the necessary observations can be made, and the little calculation required, still render this method eligible in many cases where extreme accuracy is not important. As a telescope is essential for observing an eclipse of one of the satellites, it is obvious that this method cannot be practised at sea, since the telescope cannot be used on board of ship, for want of the requisite steadiness.

The grand discovery of the progressive motion of light was first made by observations on the eclipses of Jupiter's satellites. In the year 1675, it was e.

marked by Roemer, a Danish astronomer, on comparing together observations of these eclipses during many successive years, that they take place sooner by about sixteen minutes, when the earth is on the same side of the sun with the planet, than when she is on the opposite side. The difference he ascribes to the progressive motion of light, which takes that time to pass through the diameter of the earth's orbit, making the velocity of light about one hundred and ninety-two thousand miles per second. So great a velocity startled astronomers at first, and produced some degree of distrust of this explanation of the phenomenon ; but the subsequent discovery of what is called the aberration of light, led to an independent estimation of the velocity of light, with almost precisely the same result.

Few greater feats have ever been performed by the human mind, than to measure the speed of light,-a speed so great, as would carry it across the Atlantic Ocean in the sixty-fourth part of a second, and around the globe in less than the seventh part of a second! Thus has man applied his scale to the motions of an element, that literally leaps from world to world in the twinkling of an eye. This is one example of the great power which the invention of the telescope conferred

on man.

Could we plant ourselves on the surface of this vast planet, we should see the same starry firmament expanding over our heads as we see now; and the same would be true if we could fly from one planetary world to another, until we made the circuit of them all; but the sun and the planetary system would present themselves to us under new and strange aspects. The sun himself would dwindle to one twenty-seventh of his present surface, (Fig. 53, facing page 236,) and afford a degree of light and heat proportionally diminished; Mercury, Venus, and even the Earth, would all disappear, being too near the sun to be visible; Mars would be as seldom seen as Mercury is by us, and constitute the only inferior planet. On the other hand, Saturn would shine with

[blocks in formation]

greatly augmented size and splendor. When in opposition to the sun, (at which time it comes nearest to Jupiter,) it would be a grand object, appearing larger than either Venus or Jupiter does to us. When, however, passing to the other side of the sun, through its superior conjunction, it would gradually diminish in size and brightness, and at length become much less than it ever appears to us, since it would then be four hundred millions of miles further from Jupiter than it ever is from us.

Although Jupiter comes four hundred millions of miles nearer to Uranus than the earth does, yet it is still thirteen hundred millions of miles distant from that planet. Hence the augmentation of the magnitude and light of Uranus would be barely sufficient to render it distinguishable by the naked eye. It appears, therefore, that Saturn is the peculiar ornament of the firmament of Jupiter, and would present to the telescope most interesting and sublime phenomena. As we owe the revelation of the system of Jupiter and his attendant worlds wholly to the telescope, and as the discovery and observation of them constituted a large portion of the glory of Galileo, I am now forcibly reminded of his labors, and will recur to his history, and finish the sketch which I commenced in a previous Letter.

LETTER XXII.

COPERNICUS.-GALILEO.

"They leave at length the nether gloom, and stand
Before the portals of a better land;

To happier plains they come, and fairer groves,
The seats of those whom Heaven, benignant, loves

A brighter day, a bluer ether, spreads

Its lucid depths above their favored heads

And, purged from mists that veil our earthly skies,
Shine suns and stars unseen by mortal eyes.”—Virgil.

In order to appreciate the value of the contributions which Galileo made to astronomy, soon after the invention of the telescope, it is necessary to glance at the state of the science when he commenced his discoveries

For many centuries, during the middle ages, a dark night had hung over astronomy, through which hardly a ray of light penetrated, when, in the eastern part of civilized Europe, a luminary appeared, that proved the harbinger of a bright and glorious day. This was Copernicus, a native of Thorn, in Prussia. He was born in 1473. Though destined for the profession of medicine, from his earliest years he displayed a great fondness and genius for mathematical studies, and pursued them with distinguished success in the University of Cracow. At the age of twenty-five years, he resorted to Italy, for the purpose of studying astronomy, where he resided a number of years. Thus prepared, he returned to his native country, and, having acquired an ecclesiastical living that was adequate to his support in his frugal mode of life, he established himself at Frauenberg, a small town near the mouth of the Vistula, where he spent nearly forty years in observing the heavens, and meditating on the celestial motions. He occupied the upper part of a humble farm-house, through the roof of which he could find access to an unobstructed sky, and there he carried on his observations. His instruments, however, were few and imperfect, and it does not appear that he added any thing to the art of practical astronomy. This was reserved for Tycho Brahe, who came a half a century after him. Nor did Copernicus enrich the science with any important discoveries. It was not so much his genius or taste to search for new bodies, or new phenomena among the stars, as it was to explain the reasons of the most obvious and wellknown appearances and motions of the heavenly bodies. With this view, he gave his mind to long-continued and profound meditation.

Copernicus tells us that he was first led to think that the apparent motions of the heavenly bodies, in their diurnal revolution, were owing to the real motion of the earth in the opposite direction, from observing instances of the same kind among terrestrial objects; as when the shore seems to the mariner to recede, as he rapidly sails

« PoprzedniaDalej »