Obrazy na stronie
PDF
ePub

actly once on its axis, while it is going round the circle, -the revolution on its axis always keeping exact pace with the motion in its orbit. The same thing will be observed, if you walk around a tree, always keeping your face towards the tree. If you have your face towards the tree when you set out, and walk round without turning, when you have reached the opposite side of the tree, your back will be towards it, and you will find that, in order to keep your face constantly towards the tree, it will be necessary to turn yourself round on your heel at the same rate as you go forward.

Since, however, the motion of the moon on its axis is uniform, while the motion in its orbit is unequal, the moon does in fact reveal to us a little sometimes of one side and sometimes of the other. Thus if, while carrying the apple round the candle, you carry it forward a little faster than the rate at which it turns on its axis, a portion of the hemisphere usually out of sight is brought into view on one side; or if the apple is moved forward slower than it is turned on its axis, a portion of the same hemisphere comes into view on the other side. These appearances are called the moon's librations in longitude. The moon has also a libration in latitude;-so called, because in one part of her revolution more of the region around one of the poles comes into view, and, in another part of the revolution, more of the region around the other pole, which gives the appearance of a tilting motion to the moon's axis. This is owing to the fact, that the moon's axis is inclined to the plane of her orbit. If, in the experiment with the apple, you hold the knittingneedle parallel to the candle, (in which case the axis will be perpendicular to the plane of revolution,) the candle will shine upon both poles during the whole circuit, and an eye situated where the candle is would constantly see both poles; but now incline the needle towards the plane of revolution, and carry it round, always keeping it parallel to tself, and you will observe that the two poles will be alternately in and out of sight.

The moon exhibits another appearance of this kind, called her diurnal libration, depending on the daily rotation of the spectator. She turns the same face towards the centre of the earth only, whereas we view her from the surface. When she is on the meridian, we view her disk nearly as though we viewed it from the centre of the earth, and hence, in this situation, it is subject to little change; but when she is near the horizon, our circle of vision takes in more of the upper limb than would be presented to a spectator at the centre of the earth. Hence, from this cause, we see a portion of one limb while the moon is rising, which is gradually lost sight of, and we see a portion of the opposite limb, as the moon declines to the west. You will remark that neither of the foregoing changes implies any actual motion in the moon, but that each arises from a change of position in the spectator. Since the succession of day and night depends on the revolu tion of a planet on its own axis, and it takes the moon twenty-nine and a half days to perform this revolution, so that the sun shall go from the meridian of any place and return to the same meridian again, of course the lunar day occupies this long period. So protracted an exposure to the sun's rays, especially in the equatorial regions of the moon, must occasion an excessive accumulation of heat; and so long an absence of the sun must occasion a corresponding degree of cold. A spectator on the side of the moon which is opposite to us would never see the earth, but one on the side next to us would see the earth constantly in his firmament, undergoing a gradual succession of changes, corresponding to those which the moon exhibits to the earth, but in the reverse order. Thus, when it is full moon to us, the earth, as seen from the moon, is then in conjunction with the sun, and of course presents her dark side to the moon.

Soon after this, an inhabitant of the moon would see a crescent, resembling our new moon, which would in like manner increase and go through all the changes,

from new to full, and from full to new, as we see them in the moon. There are, however, in the two cases, several striking points of difference. In the first place, instead of twenty-nine and a half days, all these changes occur in one lunar day and night. During the first and last quarters, the changes would occur in the day-time; but during the second and third quarters, during the night. By this arrangement, the lunarians would enjoy the greatest possible benefit from the light afforded by the earth, since in the half of her revolution where she appears to them as full, she would be present while the sun was absent, and would afford her least light while the sun was present. In the second place, the earth would appear thirteen times as large to a spectator on the moon as the moon appears to us, and would afford nearly the same proportion of light, so that their long nights must be continually cheered by an extraordinary degree of light derived from this source; and if the full moon is hailed by our poets as "refulgent lamp of night,"* with how much more reason might a lunarian exult thus, in view of the splendid orb that adorns his nocturnal sky! In the third place, the earth, as viewed from any particular place on the moon, would occupy invariably the same part of the heavens. For while the rotation of the moon on her axis from west to east would appear to make the earth (as the moon does to us) revolve from east to west, the corresponding progress of the moon in her

*As when the moon, refulgent lamp of night,
O'er heaven's clear azure sheds her sacred light,
When not a breath disturbs the deep serene,
And not a cloud o'ercasts the solemn scene,
Around her throne the vivid planets roll,
And stars unnumbered gild the glowing pole ;
O'er the dark trees a yellower verdure shed,
And tip with silver every mountain's head;
Then shine the vales, the rocks in prospect rise,
A flood of glory bursts from all the skies;
The conscious swains, rejoicing in the sight,
Eye the blue vault, and bless the useful light."

16

Pope's Homer.

L. A.

orbit would make the earth appear to revolve from west to east; and as these two motions are equal, their united effect would be to keep the moon apparently stat onary in the sky. Thus, a spectator at E, Fig. 38, page 175, in the middle of the disk that is turned towards the earth, would have the earth constantly on his meridian, and at E, the conjunction of the earth and sun would occur at mid-day; but when the moon arrived at G, the same place would be on the margin of the circle of illumination, and will have the sun in the horizon; but the earth would still be on his meridian and in quadrature. In like manner, a place situated on the margin of the circle of illumination, when the moon is at E, would have the earth in the horizon; and the same place would always see the earth in the horizon, except the slight variations that would occur from the librations of the moon. In the fourth place, the earth would present to a spectator on the moon none of that uniformity of aspect which the moon presents to us, but would exhibit an appearance exceedingly diversified. The comparatively rapid rotation of the earth, repeated fifteen times during a lunar night, would present, in rapid succession, a view of our seas, oceans, continents, and mountains, all diversified by our clouds, storms, and volcanoes.

E

LETTER XVII.

MOON'S ORBIT.-HER IRREGULARITIES.

"Some say the zodiac constellations

Have long since left their antique stations,

Above a sign, and prove the same

In Taurus now, once in the Ram;

That in twelve hundred years and odd,

The sun has left his ancient road,

And nearer to the earth is come,

'Bove fifty thousand miles from home."-Hudibras.

We have thus far contemplated the revolution of the moon around the earth as though the earth were at

rest. But in order to have just ideas respecting the moon's motions, we must recollect that the moon like wise revolves along with the earth around the sun. It is sometimes said that the earth carries the moon along with her, in her annual revolution. This language may convey an erroneous idea; for the moon, as well as the earth, revolves around the sun under the influence of two forces, which are independent of the earth, and would continue her motion around the sun, were the earth removed out of the way. Indeed, the moon is attracted towards the sun two and one fifth times more than towards the earth, and would abandon the earth, were not the latter also carried along with her by the same forces. So far as the sun acts equally on both bodies, the motion with respect to each other would not be disturbed. Because the gravity of the moon towards the sun is found to be greater, at the conjunction, than her gravity towards the earth, some have apprehended that, if the doctrine of universal gravitation is true, the moon ought necessarily to abandon the earth. In order to understand the reason why it does not do thus, we must reflect, that, when a body is revolving in its orbit under the influence of the projectile force and gravity, whatever diminishes the force of gravity, while that of projection remains the same, causes the body to approach nearer to the tangent of her orbit, and of course to recede from the centre; and whatever increases the amount of gravity, carries the body towards the centre. Thus, in Fig. 33, page 152, if, with a certain force of projection acting in the direction A B, and of attraction, in the direction A C, the attraction which caused a body to move in the line A D were diminished, it would move nearer to the tangent, as in A E, or A F. Now, when the moon is in conjunction, her gravity towards the earth acts in opposition to that towards the sun, (see Fig. 38, page 175,) while her velocity remains too great to carry her with what force remains, in a circle about the sun, and she therefore recedes from the sun, and commences her

« PoprzedniaDalej »