Obrazy na stronie
PDF
ePub

largest body; and such is in fact the case. A snap of a finger upon a seventy-four under full sail, if applied in the direction of its motion, would actually increase its speed, although the effect might be too small to be visible. Still it is something, and may be truly expressed by a fraction. Thus, suppose a globe, weighing a million of pounds, were suspended from the ceiling by a string, and we should apply to it the snap of a finger, it is granted that the motion would be quite insensible. Let us then divide the body into a million equal parts, each weighing one pound; then the same impulse, applied to each one separately, would produce a sensible effect, moving it, say one inch. It will be found, on trial, that the same impulse given to a mass of two pounds will move it half an inch; and hence it is inferred, that, if applied to a mass weighing a million of pounds, it would move it the millionth part of an inch.

It is one of the curious results of the second law of motion, that an unlimited number of motions may exist together in the same body. Thus, at the same moment, we may be walking around a post in the cabin of a steam-boat, accompanying the boat in its passage around an island, revolving with the earth on its axis, flying through space in our annual circuit around the sun, and possibly wheeling, along with the sun and his whole retinue of planets, around some centre in common with the starry worlds.

The THIRD LAW of motion is this: action and reaction are equal, and in contrary directions.

Whenever I give a blow, the body struck exerts an equal force on the striking body. If I strike the water with an oar, the water communicates an equal impulse to the oar, which, being communicated to the boat, drives it forward in the opposite direction. If a magnet attracts a piece of iron, the iron attracts the magnet just as much, in the opposite direction; and, in short, every portion of matter in the universe attracts and is attracted by every other, equally, in an opposite direction. This brings us to the doctrine of universal gravi

[blocks in formation]

tation, which is the very key that unlocks all the secrets of the skies. This will form the subject of my next Letter.

E

LETTER XIII.

TERRESTRIAL GRAVITY.

"To Him no high, no low, no great, no small,

He fills, He bounds, connects, and equals alí.”—Pope.

We discover in Nature a tendency of every portion of matter towards every other. This tendency is called gravitation. In obedience to this power, a stone falls to the ground, and a planet revolves around the sun. We may contemplate this subject as it relates either to phenomena that take place near the surface of the earth, or in the celestial regions. The former, gravity, is exemplified by falling bodies; the latter, universal gravitation, by the motions of the heavenly bodies. The laws of terrestrial gravity were first investigated by Galileo; those of universal gravitation, by Sir Isaac Newton. Terrestrial gravity is only an individual ex ample of universal gravitation; being the tendency of bodies towards the centre of the earth. We are so much accustomed, from our earliest years, to see bodies fall to the earth, that we imagine bodies must of necessity fall"downwards;" but when we reflect that the earth is round, and that bodies fall towards the centre on all sides of it, and that of course bodies on opposite sides of the earth fall in precisely opposite directions, and towards each other, we perceive that there must be some force acting to produce this effect; nor is it enough to say, as the ancients did, that bodies "naturally" fall to the earth. Every motion implies some force which produces it; and the fact that bodies fall towards the earth, on all sides of it, leads us to infer that that force, whatever it is, resides in the earth itself.

We therefore call it attraction. We do not, however, say what attraction is, but what it does. We must bear in mind, also, that, according to the third law of motion, this attraction is mutual; that when a stone falls towards the earth, it exerts the same force on the earth that the earth exerts on the stone; but the motion of the earth towards the stone is as much less than that of the stone towards the earth, as its quantity of matter is greater; and therefore its motion is quite insensible.

But although we are compelled to acknowledge the existence of such a force as gravity, causing a tendency in all bodies towards each other, yet we know nothing of its nature, nor can we conceive by what medium bodies at such a distance as the moon and the earth exercise this influence on each other. Still, we may trace the modes in which this force acts; that is, its laws; for the laws of Nature are nothing else than the modes in which the powers of Nature act.

We owe chiefly to the great Galileo the first investigation of the laws of terrestrial gravity, as exemplified in falling bodies; and I will avail myself of this opportunity to make you better acquainted with one of the most interesting of men and greatest of philosophers.

Galileo was born at Pisa, in Italy, in the year 1564. He was the son of a Florentine nobleman, and was destined by his father for the medical profession, and to this his earlier studies were devoted. But a fondness and a genius for mechanical inventions had developed itself, at a very early age, in the construction of his toys, and a love of drawing; and as he grew older, a passion for mathematics, and for experimental research, predominated over his zeal for the study of medicine, and he fortunately abandoned that for the more congenial pursuits of natural philosophy and astronomy. In the twenty-fifth year of his age, he was appointed, by the Grand Duke of Tuscany, professor of mathematics in the University of Pisa. At that period, there prevailed in all the schools a most extraordinary reverence for the writings of Aristotle, the preceptor of Alexander

the Great, a philosopher who flourished in Greece, about three hundred years before the Christian era. Aristotle, by his great genius and learning, gained a wonderful ascendency over the minds of men, and became the oracle of the whole reading world for twenty centuries. It was held, on the one hand, that all truths worth knowing were contained in the writings of Aristotle; and, on the other, that an assertion which contradicted any thing in Aristotle could not be true. But Galileo had a greatness of mind which soared above the prejudices of the age in which he lived, and dared to interrogate Nature by the two great and only successful methods of discovering her secrets,-experiment and observation. Galileo was indeed the first philosopher that ever fully employed experiments as the means of learning the laws of Nature, by imitating on a small what she performs on a great scale, and thus detecting her modes of operation. Archimedes, the great Sicilian philosopher, had in ancient times introduced mathematical or geometrical reasoning into natural philosophy; but it was reserved for Galileo to unite the advantages of both mathematical and experimental reasonings in the study of Nature,-both sure and the only sure guides to truth, in this department of knowledge, at least. Experiment and observation furnish materials upon which geometry builds her reasonings, and from which she derives many truths that either lie for ever hidden from the eye of observation, or which it would require ages to unfold.

This method, of interrogating Nature by experiment and observation, was matured into a system by Lord Bacon, a celebrated English philosopher, early in the seventeenth century,-indeed, during the life of Galileo. Previous to that time, the inquirers into Nature did not open their eyes to see how the facts really are ; but, by metaphysical processes, in imitation of Aristotle, determined how they ought to be, and hastily concluded that they were so. Thus, they did not study into the laws of motion, by observing how motion actually takes

place, under various circumstances, but first, in their closets, constructed a definition of motion, and thence inferred all its properties. The system of reasoning respecting the phenomena of Nature, introduced by Lord Bacon, was this: in the first place, to examine all the facts of the case, and then from these to determine the laws of Nature. To derive general conclusions from the comparison of a great number of individual instances constitutes the peculiarity of the Baconian philosophy. It is called the inductive system, because its conclusions were built on the induction, or comparison, of a great many single facts. Previous to the time of Lord Bacon, hardly any insight had been gained into the causes of natural phenomena, and hardly one of the laws of Nature had been clearly established, because all the inquirers into Nature were upon a wrong road, groping their way through the labyrinth of error. Bacon pointed out to them the true path, and held before them the torch-light of experiment and observation, under whose guidance all successful students of Nature have since walked, and by whose illumination they have gained so wonderful an insight into the mysteries of the natural world.

66

It is a remarkable fact, that two such characters as Bacon and Galileo should appear on the stage at the same time, who, without any communication with each other, or perhaps without any personal knowledge of each other's existence, should have each developed the true method of investigating the laws of Nature. Galileo practised what Bacon only taught; and some, therefore, with much reason, consider Galileo as a greater philosopher than Bacon. Bacon," says Hume, "pointed out, at a great distance, the road to philosophy; Galileo both pointed it out to others, and made, himself, considcrable advances in it. The Englishman was ignorant of geometry; the Florentine revived that science, excelled in it, and was the first who applied it, together with experiment, to natural philosophy. The former rejected, with the most positive disdain, the system of

« PoprzedniaDalej »