Obrazy na stronie
PDF
ePub

This figure likewise shows the successive positions of the earth, at different periods of the year, with respect to the signs, and what months correspond to particular signs. Thus, the earth enters Libra, and the sun Aries, on the twenty-first of March, and on the twenty-first of June, the earth is just entering Capricorn, and the sun, Cancer. You will call to mind what is meant by this phraseology,—that by saying the earth enters Libra, we mean that a spectator placed on the sun would see the earth in that part of the celestial ecliptic, which is occupied by the sign Libra; and that a spectator on the earth sees the sun at the same time projected on the opposite part of the heavens, occupied by the sign Cancer.

Had the axis of the earth been perpendicular to the plane of the ecliptic, then the sun would always have appeared to move in the equator, the days would every where have been equal to the nights, and there could have been no change of seasons. On the other hand, had the inclination of the ecliptic to the equator been much greater than it is, the vicissitudes of the seasons would have been proportionally greater, than at present. Suppose, for instance, the equator had been at right angles to the ecliptic, in which case, the poles of the earth would have been situated in the ecliptic itself; then, in different parts of the earth, the appearances would have been as follows: To a spectator on the equator, (where all the circles of diurnal revolution are perpendicular to the horizon,) the sun, as he left the vernal equinox, would every day perform his diurnal · revolution in a smaller and smaller circle, until he reached the north pole, when he would halt for a moment, and then wheel about and return to the equator, in a reverse order. The progress of the sun through the southern signs, to the south pole, would be similar to that already described. Such would be the appear ances to an inhabitant of the equatorial regions. To a spectator living in an oblique sphere, in our own latitude, for example, the sun, while north of the equator,

would advance continually northward, making his diurnal circuit in parallels further and further distant from the equator, until he reached the circle of perpetual apparition; after which, he would climb, by a spiral course, to the north star, and then as rapidly return to the equator. By a similar progress southward, the sun would at length pass the circle of perpetual occultation, and for some time (which would be longer or shorter, according to the latitude of the place of observation) there would be continual night. To a spectator on the pole of the earth and under the pole of the heaven, during the long day of six months, the sun would wind its way to a point directly over head, pouring down upon the earth beneath not merely the heat of the torrid zone, but the heat of a torrid noon, accumulating without intermission.

The great vicissitudes of heat and cold, which would attend these several movements of the sun, would be wholly incompatible with the existence of either the animal or the vegetable kingdom, and all terrestrial Nature would be doomed to perpetual sterility and desolation. The happy provision which the Creator has made against such extreme vicissitudes, by confining the changes of the seasons within such narrow bounds, conspires with many other express arrangements in the economy of Nature, to secure the safety and comfort of the human race.

Perhaps you have never reflected upon all the reasons, why the several changes of position, with respect to the horizon, which the sun undergoes in the course of the year, occasion such a difference in the amount of heat received from him. Two causes contribute to increase the heat of Summer and the cold of Winter. The higher the sun ascends above the horizon, the more directly his rays fall upon the earth; and their heating power is rapidly augmented, as they approach a perpendicular direction. When the sun is nearly over head, his rays strike us with far greater force than when they meet us obliquely; and the earth absorbs a far

greater number of those rays of heat which strike it perpendicularly, than of those which meet it in a slanting direction. When the sun is near the horizon, his rays merely glance along the ground, and many of them, before they reach it, are absorbed and dispersed in passing through the atmosphere. Those who have felt only the oblique solar rays, as they fall upon objects in the high latitudes, have a very inadequate idea of the power of a vertical, noonday sun, as felt in the region of the equator.

The increased length of the day in Summer is another cause of the heat of this season of the year. This cause more sensibly affects places far removed from the equator, because at such places the days are longer and the nights shorter than in the torrid zone. By the operation of this cause, the solar heat accumulates there so much, during the longest days of Summer, that the temperature rises to a higher degree than is often known in the torrid climates.

But the temperature of a place is influenced very much by several other causes, as well as by the force and duration of the sun's heat. First, the elevation of a country above the level of the sea has a great influence upon its climate. Elevated districts of country, even in the torrid zone, often enjoy the most agreeable climate in the world. The cold of the upper regions of the atmosphere modifies and tempers the solar heat, so as to give a most delightful softness, while the uniformity of temperature excludes those sudden and excessive changes which are often experienced in less favored climes. In ascending certain high mountains situated within the torrid zone, the traveller passes, in a short time, through every variety of climate, from the most oppressive and sultry heat, to the soft and balmy air of Spring, which again is succeeded by the cooler breezes of Autumn, and then by the severest frosts of Winter. A corresponding difference is seen in the products of the vegetable kingdom. While Winter reigns on the summit of the mountain, its central re

1

gions may be encircled with the verdure of Spring, and its base with the flowers and fruits of Summer. Secondly, the proximity of the ocean also has a great effect to equalize the temperature of a place. As the ocean changes its temperature during the year much less than the land, it becomes a source of warmth to contiguous countries in Winter, and a fountain of cool breezes in Summer. Thirdly, the relative humidity or dryness of the atmosphere of a place is of great importance, in regard to its effects on the animal system. A dry air of ninety degrees is not so insupportable as a humid air of eighty degrees; and it may be asserted as a general principle, that a hot and humid atmosphere is unhealthy, although a hot air, when dry, may be very salubrious. In a warm atmosphere which is dry, the evaporation of moisture from the surface of the body is rapid, and its cooling influence affords a most striking relief to an intense heat without; but when the surrounding atmosphere is already filled with moisture, no such evaporation takes place from the surface of the skin, and no such refreshing effects are experienced from this cause. Moisture collects on the skin; a sultry, oppressive sensation is felt; and chills and fevers are usually in the train.

LETTER XII.

LAWS OF MOTION.

"What though in solemn silence, all
Move round this dark, terrestrial ball!

In reason's ear they all rejoice,

And utter forth a glorious voice;

For ever singing, as they shine,

'The hand that made us is divine." "—Addison.

HOWEVER incredible it may seem, no fact is more certain, than that the earth is constantly on the wing, flying around the sun with a velocity so prodigious, that, for every breath we draw, we advance on our way forty

or fifty miles. If, when passing across the waters in a steam-boat, we can wake, after a night's repose, and find ourselves conducted on our voyage a hundred miles, we exult in the triumphs of art, which could have moved so ponderous a body as a steam-ship over such a space in so short a time, and so quietly, too, as not to disturb our slumbers; but, with a motion vastly more quiet and uniform, we have, in the same interval, been carried along with the earth in its orbit more than half a million of miles. In the case of the steam-ship, however perfect the machinery may be, we still, in our waking hours at least, are made sensible of the action of the forces by which the motion is maintained, as the roaring of the fire, the beating of the piston, and the dashing of the paddle-wheels; but in the more perfect machinery which carries the earth forward on her grander voyage, no sound is heard, nor the least intimation afforded of the stupendous forces by which this motion is achieved. To the pious observer of Nature it might seem sufficient, without any inquiry into second causes, to ascribe the motions of the spheres to the direct agency of the Supreme Being. If, however, we can succeed in finding the secret springs and cords, by which the motions of the heavenly bodies are immediately produced and controlled, it will detract nothing from our just admiration of the Great First Cause of all things. We may therefore now enter upon the inquiry into the nature or laws of the forces by which the earth is made to revolve on her axis and in her orbit; and having learned what it is, that causes and maintains the motions of the earth, you will then acquire, at the same time, a knowledge of all the celestial machinery. The subject will involve an explanation of the laws of motion, and of the principles of universal gravitation.

It was once supposed, that we could never reason respecting the laws that govern the heavenly bodies from what we observe in bodies around us, but that motion is one thing on the earth and quite another thing in the skies; and hence, that it is impossible for us, by any

« PoprzedniaDalej »