Obrazy na stronie
PDF
ePub

Objects that are classed as red, blue, yellow, &c., are objects that decompose light in strongly-contrasted ways; that is, we know contrasts of colour as contrasts in the changes produced in a uniform incident force. Manifestly, any two things which do not work unequal effects on consciousness, either by unequally opposing our own energies, or by impressing our senses with unequally modified forms of certain external energies, cannot be distinguished by us. Hence the proposi tion that the different parts of any whole must react differently on a uniform incident force, and must so reduce it to a group of multiform forces, is in essence a truism. A further step will reduce this truism to its lowest terms.

When, from unlikeness between the effects they produce on consciousness, we predicate unlikeness between two objects, what is our warrant? and what do we mean by the unlikeness, objectively considered? Our warrant is the persistence of force. Some kind or amount of change has been. wrought in us by the one, which has not been wrought by the other. This change we ascribe to some force exercised by the one which the other has not exercised. And we have no alternative but to do this, or to assert that the change had no antecedent; which is to deny the persistence of force. Whence it is further manifest that what we regard as the objective unlikeness is the presence in the one of some force, or set of forces, not present in the other-something in the kinds or amounts or directions of the constituent forces of the one, which those of the other do not parallel. But now if things or parts of things which we call different, are those of which the constituent forces differ in one or more respects; what must happen to any like forces, or any uniform force, falling on them? Such like forces, or parts of a uniform force, must be differently modified. The force which is present in the one and not in the other, must be an element in the conflict-must produce its equivalent reaction; and must so affect the total reaction. To say otherwise is to say that

this differential force will produce no effect; which is to say that force is not persistent.

I need not develop this corollary further. It manifestly follows that a uniform force, falling on a uniform aggregate, must undergo dispersion; that falling on an aggregate made up of unlike parts, it must undergo dispersion from each part, as well as qualitative differentiations; that in proportion as the parts are unlike, these qualitative differentiations must be marked; that in proportion to the number of the parts, they must be numerous; that the secondary forces so produced, must undergo further transformations while working equivalent transformations in the parts that change them; and similarly with the forces they generate. Thus the conclusions that a part-cause of Evolution is the multiplication of effects; and that this increases in geometrical progression as the heterogeneity becomes greater; are not only to be established inductively, but are deducible from the deepest of all truths

CHAPTER XXI.

SEGREGATION.

$163. THE general interpretation of Evolution is far from being completed in the preceding chapters. We must contemplate its changes under yet another aspect, before we can form a definite conception of the process constituted by them. Though the laws already set forth, furnish a key to the rearrangement of parts which Evolution exhibits, in so far as it is an advance from the uniform to the multiform; they furnish no key to this re-arrangement in so far as it is an advance from the indefinite to the definite. On studying the actions and re-actions everywhere going on, we have found it to follow inevitably from a certain primordial truth, that the homogeneous must lapse into the heterogeneous, and that the heterogeneous must become more heterogeneous; but we have not discovered why the differently-affected parts of any simple whole, become clearly marked off from each other, at the same time that they become unlike. Thus far no reason has been assigned why there should not ordinarily arise a vague chaotic heterogeneity, in place of that orderly heterogeneity displayed in Evolution. It still remains to find out the cause of that local integration which accompanies local differentiation-that gradually-completed segregation of like units into a group, distinctly separated from neighbouring groups which are severally made up of other kinds of units. The rationale will be conveniently introduced by a

few instances in which we may watch this segregative process taking place.

When towards the end of September, the trees are gaining their autumn colours, and we are hoping shortly to see a further change increasing still more the beauty of the landscape, we are not uncommonly disappointed by the occurrence of an equinoxial gale. Out of the mixed mass of foliage on each branch, the strong current of air carries away the decaying and brightly-tinted leaves, but fails to detach those which are still green. And while these last, frayed and scared by long-continued beatings against each other, and the twigs around them, give a sombre colour to the woods, the red and yellow and orange leaves are collected together in ditches and behind walls and in corners where eddies allow them to settle. That is to say, by the action of that uniform force which the wind exerts on both kinds, the dying leaves are picked out from among their still living companions and gathered in places by themselves. Again, the separation of particles of different sizes, as dust and sand from pebbles, may be similarly effected; as we see on every road in March. And from the days of Homer downwards, the power of currents of air, natural and artificial, to part from one another units of unlike specific gravities, has been habitually utilized in the winnowing of chaff from wheat. In every river we see how the mixed materials carried down, are separately deposited-how in rapids the bottom gives rest to nothing but boulders and pebbles; how where the current is not so strong, sand is let fall; and how, in still places, there is a sediment of mud. This selective action of moving water, is commonly applied in the arts to obtain masses of particles of different degrees of fineness. Emery, for example, after being ground, is carried by a slow current through successive compartments; in the first of which the largest grains subside; in the second of which the grains that reach the bottom before the water has escaped, are somewhat smaller; in the third smaller still;

until in the last there are deposited only those finest particles which fall so slowly through the water, that they have not previously been able to reach the bottom. And in a way that is different though equally significant, this segregative effect of water in motion, is exemplified in the carrying away of soluble from insoluble matters-an application of it hourly made in every laboratory. The effects of

the uniform forces which aerial and aqueous currents exercise, are paralleled by those of uniform forces of other orders. Electric attraction will separate small bodies from large, or light bodies from heavy. By magnetism, grains of iron may be selected from among other grains; as by the Sheffield grinder, whose magnetized gauze mask filters out the steeldust which his wheel gives off, from the stone-dust that accompanies it. And how the affinity of any agent acting differently on the components of a given body, enables us to take away some component and leave the rest behind, is shown in almost every chemical experiment.

What now is the general truth here variously presented? How are these several facts and countless similar ones, to be expressed in terms that embrace them ail? In each case we see in action a force which may be regarded as simple or uniform-fluid motion in a certain direction at a certain velocity; electric or magnetic attraction of a given amount; chemical affinity of a particular kind: or rather, in strictness, the acting force is compounded of one of these and certain other uniform forces, as gravitation, etc. In each case we have an aggregate made up of unlike units-either atoms of different substances combined or intimately mingled, or fragments of the same substance of different sizes, or other constituent parts that are unlike in their specific gravities, shapes, or other attributes. And in each case these unlike units, or groups of units, of which the aggregate consists, are, under the influence of some resultant force acting indiscriminately on them all, separated from each other-segregated into minor aggregates, each consisting of units that are

« PoprzedniaDalej »