Obrazy na stronie
PDF
ePub

clearly. Taking the simplest case (that of a sphere) we see that while the part nearest to the radiating centre receives the rays at right angles, the rays strike the other parts of the exposed side at all angles from 90° down to 0°. Again, the molecular vibrations propagated through the mass from the surface which receives the heat, must proceed inwards at angles differing for each point. Further, the interior parts of the sphere affected by the vibrations proceeding from all points of the heated side, must be dissimilarly affected in proportion as their positions are dissimilar. So that whether they be on the recipient area, in the middle, or at the remote side, the constituent atoms are all thrown into states of vibration more or less unlike each other.

But now, what is the ultimate meaning of the conclusion that a uniform force produces different changes throughout a uniform mass, because the parts of the mass stand in different relations to the force? Fully to understand this, we must contemplate each part as simultaneously subject to other forces-those of gravitation, of cohesion, of molecular motion, &c. The effect wrought by an additional force, must be a resultant of it and the forces already in action. If the forces already in action on two parts of any aggregate, are different in their directions, the effects produced on these two parts by like forces must be different in their directions. Why must they be different? They must be different because such unlikeness as exists between the two sets of factors, is made by the presence in the one of some specially-directed force that is not present in the other; and that this force will produce an effect, rendering the total result in the one case unlike that in the other, is a necessary corollary from the persistence of force. Still more manifest does it become that the dissimilarly-placed parts of any aggregate must be dissimilarly modified by an incident force, when we remember that the quantities of the incident force to which they are severally subject, are not equal, as above supposed; but are nearly always very unequal. The outer parts of masses are usually

alone exposed to chemical actions; and not only are their inner parts shielded from the affinities of external elements, but such affinities are brought to bear unequally on their surfaces; since chemical action sets up currents through the medium in which it takes place, and so brings to the various parts of the surface unequal quantities of the active agent. Again, the amounts of any external radiant force which the different parts of an aggregate receive, are widely contrasted : we have the contrast between the quantity falling on the side next the radiating centre, and the quantity, or rather no quantity, falling on the opposite side; we have contrasts in the quantities received by differently-placed areas on the exposed side; and we have endless contrasts between the quantities received by the various parts of the interior. Similarly when mechanical force is expended on any aggregate, either by collision, continued pressure, or tension, the amounts of strain distributed throughout the mass are manifestly unlike for unlike positions. But to say the different parts of an aggregate receive different quantities of any incident force, is to say that their states are modified by it in different degrees is to say that if they were before homogeneous in their relations they must be rendered to a proportionate extent heterogeneous; since, force being persistent, the different quantities of it falling on the different parts, must work in them different quantities of effect—different changes. Yet one more kindred deduction is required to complete the argument. We may, by parallel reasoning, reach the conclusion that, even apart from the action of any external force, the equilibrium of a homogeneous aggregate must be destroyed by the unequal actions of its parts on each other. That mutual influence which produces aggregation (not to mention other mutual influences) must work different effects on the different parts; since they are severally exposed to it in unlike amounts and directions. This will be clearly seen on remembering that the portions of which the whole is made up, may be severally regarded as minor wholes; that on each of

these minor wholes, the action of the entire aggregate then becomes an external incident force; that such external incident force must, as above shown, work unlike changes in the parts of any such minor whole; and that if the minor wholes are severally thus rendered heterogeneous, the entire aggregate is rendered heterogeneous.

The instability of the homogeneous is thus deducible from that primordial truth which underlies our intelligence. One stable homogeneity only, is hypothetically possible. If centres of force, absolutely uniform in their powers, were diffused with absolute uniformity through unlimited space, they would remain in equilibrium. This however, though a verbally intelligible supposition, is one that cannot be represented in thought; since unlimited space is inconceivable. But all finite forms of the homogeneous-all forms of it which we can know or conceive, must inevitably lapse into heterogeneity. In three several ways does the persistence of force necessitate this. Setting external agencies aside, each unit of a homogeneous whole must be differently affected from any of the rest by the aggregate action of the rest upon it. The resultant force exercised by the aggregate on each unit, being in no two cases alike in both amount and direction, and usually not in either, any incident force, even if uniform in amount and direction, cannot produce like effects on the units. And the various positions of the parts in relation to any incident force, preventing them from receiving it in uniform amounts and directions, a further difference in the effects wrought on them is inevitably produced.

One further remark is needed. To the conclusion that the changes with which Evolution commences, are thus necessitated, remains to be added the conclusion that these changes must continue. The absolutely homogeneous must lose its equilibrium; and the relatively homogeneous must lapse into the relatively less homogeneous. That which is true of any total mass, is true of the parts into which it segregates. The uniformity of each such part must

as inevitably be lost in multiformity, as was that of the original whole; and for like reasons. And thus the continued changes which characterize Evolution, in so far as they are constituted by the lapse of the homogeneous into the heterogeneous, and of the less heterogeneous into the more heterogeneous, are necessary consequences of the persistence of force.

CHAPTER XX.

THE MULTIPLICATION OF EFFECTS.

§ 156. To the cause of increasing complexity set forth in the last chapter, we have in this chapter to add another. Though secondary in order of time, it is scarcely secondary in order of importance. Even in the absence of the cause already assigned, it would necessitate a change from the homogeneous to the heterogeneous; and joined with it, it makes this change both more rapid and more involved. To come in sight of it, we have but to pursue a step further, that conflict between force and matter already delineated. Let us do this.

When a uniform aggregate is subject to a uniform force, we have seen that its constituents, being differently conditioned, are differently modified. But while we have contemplated the various parts of the aggregate as thus undergoing unlike changes, we have not yet contemplated the unlike changes simultaneously produced on the various parts of the incident force. These must be as numerous and important as the others. Action and re-action being equal and opposite, it follows that in differentiating the parts on which it falls in unlike ways, the incident force must itself be correspondingly differentiated. Instead of being as before, a uniform force, it must thereafter be a multiform force-a group of dissimilar forces. A few illustrations will make this truth manifest.

« PoprzedniaDalej »